
1

�� � �� � ��� �	
 � � � �� � � � � �� �
 � � �
 � �

Prof. Hui Jiang

Dept of Computer Science and Engineering

York University

�� � �

�� � �� "! #%$ &' ()

*+ , -. /0 132 45 67

• CPU scheduling is the basis of mult iprogramming

• CPU scheduling consists of two components:

–– CPU schedulerCPU scheduler: when CPU becomes idle, the CPU scheduler
must select from among the processes in ready queue.

–– DispatcherDispatcher: the module which gives control of CPU to the
process selected by the CPU scheduler.

• Switching context

• Switching to user mode

• Jumping to the proper location in user program to restart

– Dispatch latency: the time it takes for the dispatcher to stop
one process and start another running

• Dispatcher should be as fast as possible

+ 80 0 9: ;53< 0 < = � �� 6> : 80 0 9: ;5 < 0

= . /0 12 45 67

• CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

4. Terminates.

• Non-preemptive scheduling takes place under 1 and 4.

– Once the CPU has been allocated to a process, the process
keeps the CPU until it releases CPU.

• Preemptive scheduling takes place in 1,2,3,4.

– A running process can be preempted by another process

– How about if the preempted process is updating some crit ical
data structure?

• Process synchronization

• Disable interrupt

– Not easy to make OS kernel to support preemptive scheduling

*+ , ?2 8 = ;< = � @ AB ?2 8 = ;

• Process execution

= CPU burst + I/O burst

• Process alternates
between these two states.

2

� 5 = ;� 7 8 � 9 � � *+ ,> ?2 8 = ; �5 90 = -. / 0 12 45 67 * 85 ;0 85 �

• CPU utilization – keep the CPU as busy as possible.

– Usage percentage (40%-- 90%)

• Throughput – # of processes that complete their execution
per time unit.

• Turnaround t ime – amount of time to execute a particular
process.

– The interval from the t ime of submission a process to the
time of completion.

• Waiting time – amount of time a process has been waiting in
the ready queue.

• Response t ime – amount of t ime it takes from when a request
was submitted until the f irst response is produced, not the
final output (for time-sharing environment).

-. / 0 12 45 67 � 47 � 85 ; / 9 =

• First-come, f irst-served (FCFS) scheduling
algorithm

• Shortest-Job-First (SJF) Scheduling

• Priority Scheduling

• Round-Robin (RR) scheduling

• Multi-level Queue Scheduling

• Multilevel Feedback Queue Scheduling

�5 8 = ;> *� 90 � �5 8 = ;> -0 8< 0 1� � * � -�

-. / 0 12 45 67

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive at time 0 in the order: P1 , P2 , P3
The Gantt Chart for the scheduling is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27.

• Average waiting t ime: (0 + 24 + 27)/3 = 17.

P1 P2 P3

24 27 300

3

� � � � ��� ��� �
	 �� � � ��� ��� �

Suppose that the processes arrive in the order:

P2 , P3 , P1 .

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3.

• Average waiting t ime: (6 + 0 + 3)/3 = 3.

• FCFS is easy to implement (as a FIFO sequence).

• FCFS results in long wait in most cases and suffers convoy effect.

– Convoy effect : all the other processes wait for one big process
to get off the CPU.

P1P3P2

63 300

- /� 8 ;0 = ;> �� ?> �5 8 = ;� - � �� -. /0 12 45 67
• Associate with each process the length of its next CPU burst.

Schedule CPU to process with the shortest time.

– The shortest one is the first.

• Implementation: ready queue

�

sorted list.

• Two schemes:

– nonpreemptive – once CPU given to the process it cannot be
preempted until it completes its CPU burst.

– preemptive – if a new process arrives with CPU burst length
less than remaining t ime of current executing process, it
preempts. This scheme is know as the ShortestShortest--RemainingRemaining--
TimeTime--First (SRTFFirst (SRTF).

• SJF is optimal – gives minimum average waiting time for a given set
of processes.

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• SJF (non-preemptive)

• Average waiting t ime = (0 + 6 + 3 + 7)/4 = 4

�� � 9: 40 � � �� 6> + 80 0 9: ;53< 0 - � �

P1 P3 P2

73 160

P4

8 12

�� � 9: 40 � � + 80 0 9: ;5 < 0 - � �

� = /� 8 ;0 = ;> 80 9 � 5 65 67 > ;5 90 > �5 8 = ;�

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• SJF (preemptive)

• Average waiting t ime = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

4

�� �� � � ��� � � � 	� � � �

� � � � � �� �� � � � �

• Length of next CPU burst is unknown.

• Can only estimate the length.

• Can be done by using the length of previous CPU
bursts, using exponential averagingexponential averaging, to predict
the next one.

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .1 1 nnn t ταατ −+=+

�� �� � �� �� � �� �� �� � ! � �" #�$ �% ! �%
• αααα =0

– ττττn+1 = ττττn

– Recent history does not count.

• αααα =1

– ττττn+1 = tn

– Only the actual last CPU burst counts.

• If we expand the formula, we get:

ττττn+1 = αααα tn+(1 - αααα) αααα tn-1 + …

+(1 - αααα)j αααα tn-j + …

+(1 - αααα)n-1 t0 ττττ0

• Since both αααα and (1 - αααα) are less than or equal to 1, each
successive term has less weight than its predecessor.

�� �� � � � �� � �� �� � � � ! � �" #�$ �% ! �%

• αααα =0
– ττττn+1 = ττττn

– Recent history does not count.
• αααα =1

– ττττn+1 = tn

– Only the actual last CPU burst counts.
• If we expand the formula, we get:

ττττn+1 = αααα tn+(1 - αααα) αααα tn-1 + …
+(1 - αααα)j αααα tn-j + …
+(1 - αααα)n-1 t0 ττττ0

• Since both αααα and (1 - αααα) are less than or equal to 1, each
successive term has less weight than its predecessor.

&$ � ' !(!� � � �) � *� �%) � �) �+ � � , &- ./$ �

5

&$!� $! � �()� ' / � ! �%

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest prior ity
(smallest integer ≡≡≡≡ highest priority).

– Preemptive

– nonpreemptive

• SJF is a priority scheduling where priority is the predicted
next CPU burst time.

• Problem ≡≡≡≡ Starvation – low priority processes may never
execute.

• Solution ≡≡≡≡ Aging – as time progresses increase the priority of
the process.

�� / � ' �� � ! � � � � �

• Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this t ime has elapsed, the
process is preempted and added to the end of the ready queue.

– Ready queue is a circular queue or FIFO queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

• Performance:

– q large � FCFS

– q small � too many context switches, so overhead is high.

– q must be large with respect to most CPU bursts’ lengths.

� ! � � � / � � / � � � ' ,� � � �

� 	 ! () � !� �

�� �� � �� � � � � 	 !) � ! � �

� / � � / �
 ��

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but
better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

6

�/$ � �$ � / � ' � !� � � �$! � � � !) �) �

� ! � � � / � � / �

� / � ! � � #� � � / � / �

• Ready queue is partitioned into separate queues:
– foreground (interactive)
– background (batch)

• Any process is permanently assigned to one of these queues
• Each queue has its own scheduling algorithm, i.e.,

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues.
– Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e.,
• 80% to foreground in RR
• 20% to background in FCFS

� � � � � � � � �� � �

� / � ! � � #� � � / � / � �() � ' / � ! �% � / � ! �� #� �� � � ' � �(� � / � / �

• A process can move between the various queues; aging can be
implemented this way.

– If used too much CPU time

�

lower-priority queue

– If waited too long

�

higher-priority queue

• Multi level-feedback-queue scheduler defined by the following
parameters:

– number of queues

– scheduling algor ithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will enter
when that process needs service

• It is the most general CPU scheduling algorithm. Can be
configured to match a specific system under design.

7

�� �� � �� � � � / � ! � � #� �� � � ' � �(�

� / � / �

• Three queues:

– Q0 – time quantum 8
milliseconds

– Q1 – time quantum 16
milliseconds

– Q2 – FCFS

• Scheduling

– A new job enters queue Q0.
When it gains CPU, job
receives 8 milliseconds. If it
does not finish in 8
milliseconds, job is moved
to queue Q1.

– At Q1 job is again served
FCFS and receives 16
additional milliseconds. If it
still does not complete, it is
preempted and moved to
queue Q2.

– Always preemptive.

� / � ! � � �� &$ � (� � �� $ �() � ' / � ! �%
• CPU scheduling more complex when multiple CPUs are available.
• Homogeneous processors within a multiprocessor.

– Any available processor can then be used to run any process
in the queue.

• One common queue vs. a separate queue for each CPU
• Symmetric multiprocessing – each processor is self-scheduling

– Each processor select its processes from the queue
– Process synchronization when accessing common queues

• Asymmetric multiprocessing – one processor (master) schedules
for all processors

– only one processor accesses the system data structures
– alleviating the need for data sharing.

�� � �� � !� � �() � ' / � ! �%

• Hard real-time systems – requires to complete a critical task
within a guaranteed amount of time.

– Hard to achieve in a general-purpose computer.

• Soft real-time computing – requires that the real-time processes
receive priority over others (no aging).

• The dispatch latency must be small

�

preempt system call
(kernel)

– Adding preemption points (safe points) in system calls

– Making the entire kernel preemptible by using process
synchronization technique to protect all critical region

�() � ' / � ! �% " �% � $!)� � # � � / � !� �

• Analytic evaluation: deterministic modeling

– Given a pre-determined workload, calculate the performance
of each algorithm for that workload.

• Queuing Models

– No static workload available, so use the probabilist ic
distribution of CPU and I/O bursts.

– Use queuing-network analysis.

– The classes of algorithms and distributions that can be
handled in this way are fairly limited.

• Simulation: use a simulator to model a computer system

– simulator is driven by random-number generator according
to certain distributions.

– Simulator is driven by a trace fi le, which records actual events
happened in a real system.

